מנסרה משולשת

דגשים בהוראת הנושא:
- אפשר לקבל נפח של מנסרה משולשת שהבסיס שלה משולש ישר-זווית על ידי חציית התיבה לשתי מנסרות. (כפי שנעשה בנושא השטח במעבר ממלבן למשולש ישר-זווית).
- אפשר לקבל נפח של מנסרה משולשת כלשהי כסכום או הפרש של שתי מנסרות שבסיסיהן משולשים ישרי-זווית.
- יש ללמוד לחשב את שטח הפנים והנפח של מנסרה שממדיה נתונים באמצעים מספריים ואלגבריים.
- יש לדון בהשתנות שטח פני המנסרה המשולשת כתוצאה משינויים חיבוריים וכפליים באורכי המקצועות למשל במקרים שבהם אורכי כל המקצועות מוכפלים פי שניים.
- יש לדעת לסרטט פריסה של מנסרה משולשת.
- אפשר לשלב ידע על צורות חופפות, סוגי משולשים ומנסרות משולשות.
שיוך לכיתות ונושאים מרכזיים בתוכנית הלימודים
- כיתה
- נושא מרכזי
- {{m.label}}{{$last ? '' : ', '}}
סרטונים
אולי תתעניינו גם ב...
פתרון משוואות
משוואה בנויה משני ביטויים אלגבריים שלפחות באחד מהם יש נעלם ובין הביטויים יש סימן שוויון.פתרון המשוואה הוא המספר (או קבוצת המספרים) שהצבתו במקום הנעלם מביאה ל...
ניצבות והקבלה
ניצבות: ישר (או קטע) ניצב לישר (או קטע) אחר אם הם נחתכים בזווית ישרה. הקבלה: מושג ההקבלה מוכר לתלמידים מבית הספר היסודי, ולפיו שני ישרים הנמצאים באותו מישור ...
זוויות סימון, מדידה ומיון
הגדרה: שתי קרניים היוצאות מנקודה אחת יוצרות זווית. הנקודה נקראת קודקוד; הזווית והקרניים נקראות שוקי הזווית.
הרעיון שלכם כאן!
אם גם לכם יש מערך שעור רב כשרון או רעיון מקורי, מעניין, שמצית את הדמיון, מעורר את החושים ומפיח חיים בשיעורים- שלחו לנו אותו!